Polarized light methods for probing sub-wavelength scale structural anisotropy

Established by the Ministry of Human Resource Development, Government of India, to promote the basic science and Interdisciplinary research in India in the year 2006

Nirmalya Ghosh

Bio Optics & Nano Photonics

SFM 2022

Department of Physical Sciences

Nano Photonics

Polarization&Angularmomentum of light

Spin Orbit interaction of light

Plasmonic devices, sensors

Space Optics instrumentation

e ↓

Bio-Photonics

Novel experimental Poalrimetry systems and models for characterization of biological tissues and complex systems

www.iiserkol.ac.in/~nghosh/

Current PhD students Shyamal Jee

Niladri Modak

Jeeban K Nayak

Anwesha

Postdoctoral Fellows

Dr. Debdatta Ray

Dr. Tribikram Choudhury

BS- MS students

Sayantan Das, Ashutosh,Sayan Ghosh Ritwik Dhara,Aloke Jana,Abhilipsa

Former PhD students

Jalpa Soni, Nandan Das, Mandira Pal, Sudipta Saha, Shubham Chandel, Subir K Roy, Ankit K Singh, Athira

Collaborators @ Physics

P. K. Panigrahi, Ayan Banerjee, Partha Mitra , Dibyendu Nandi, Sourin Das, Satyabrata Raj..

Collaborators @ Chemistry

Priyadarsi De, C. Malla Reddy, , Raja Shunmugam, Debasish Halder, Debansu Chaudhuri, Soumyajit Roy

Collaborators from India & abroad

Outline

Probing nano scale structural anisotropy using polarized light The need & the outstanding challenges and issues

A unique dark-field polarization Mueller matrix system

Simultaneous spectroscopic Mueller matrix + Microscopy & Imaging with sub-wavelength resolution!

Differential Mueller matrix inverse analysis

Decoupling of confounding effects of high NA polarimetry + Quantitative spatial mapping of anisotropy

Probing self-healing behaviour of bio-inspired organic crystals using polarized light

Nano scale tissue multifractal anisotropy in polarized light scattering: novel biomarker for precancer detection

Stokes-Mueller formalism

Polarization state of light : Stokes vector Intensity

Degree of polarization

$$DOP = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}$$

Unpolarized	Horizontal	Vertical	$+45^{0}$	135 [°] (-45 [°])	Left circular	Right circular
state	polarization	polarization	polarization	polarization	polarization	polarization
	(0^{0})	(90^{0})				
$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	$\begin{pmatrix} 1\\ -1 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$ \left(\begin{array}{c} 1\\ 0 \end{array}\right) $	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$
$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\0 \end{bmatrix}$	$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} -1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\ -1 \end{pmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$

Quantitative Polarimetry -Stokes-Mueller formalism Mueller matrix

Transforms Stokes vector of incident light to that of scattered light

Complete information about all the anisotropy properties of medium

Challenges in nano-sensitive Polarimetry

Anisotropy parameters measurement with nanometer spatial resolution (High NA imaging, NA ~ 0.9)

•Non-ideal POL behaviour: Scrambling of polarization due to **tight focusing**

Confounding effects- Crosstalk +Blurring

Difficulties in interpretation & quantification

• Difficulties in recording weak polarization scattering signal of nano scale objects

Custom designed dark-field Mueller matrix microscopy system + Robust calibration + Polarization inverse analysis model

Mueller matrix measurements integrated with Dark-field microscope + Spectroscopy

Generation & Analysis of 4 optimized elliptical polarization states

Mueller matrix Spectroscopy + Imaging!

Developed in-house

Applied Phys. Lett., 104, 131902 (2014), Sc. Rep, 6, 26466 (2016), Opt. Lett., 39, 2431 (2014), Opt. Exp, 21, 15475 – 15489 (2013)

Scheme for Mueller matrix construction

4x4 intensity measurement matrix M_i & the Mueller matrix M_s

$$M_i = A M_s W;$$
 $M_s = A^{-1} M_i W^{-1}$

PSG matrix *W*

PSA matrix A

Experimental $W(\lambda)$ and $A(\lambda)$ determined using a robust calibration method

Takes care of the complicated polarization evolution due to tight focusing & ensures high sensitivity

Decoupling of confounding effects: Polarization inverse analysis

Dark field arrangement enables detection of weak scattering signal from nano scale objects

Decoupling of POL effects: Differential Mueller matrix formalism

Adaptation of differential Jones calculus to depolarizing Mueller matrix

R. C. Jones, J. Opt. Soc. Am. 38, 671 (1948)

$$\frac{dM}{dz} = mM$$

LD/CD: Linear / Circular diattenuation LR/CR: Linear / Circular retardance

 $\frac{d\mathbf{M}(z)}{dz} = \mathbf{m}\mathbf{M}(z)$

light

M

d

Ideal ordered system (Anti-symmetric form)

Non-ideal POL response, depolarization + disorder

Decouple the non-ideal POL response using the symmetries of Mueller matrix

•**Non-ideal POL response due to tight focusing filtered out through** L_u •**Quantitative information on structural order :** anisotropy parameters in L_m

Anisotropy imaging with nano-scale spatial resolution confirmed!

Nanostructured anisotropic medium – Plasmonic (Gold -Au) metasurfaces

Electron beam Lithography

Tailoring Geometry at nanometer length scale

Dark field POL M₁₁

~300 nm 2 NA

ACS Nano, 11, 1641-1648 (2017), Communications Physics, 4, 102 (2021), Phys. Rev. A., 97, 053801 (2018), Phys. Rev. A., 97, 043823 (2018)

Application Example - 1

Probing self-healing behaviour of piezoelectric molecular crystals using polarized light

Gaining quantitative insight on the self-healing mechanism through the *microscopic* optical anisotropy parameters

Bhunia et al., Science, 2021, 373, 6552, 321-327

Dr. C. Malla Reddy: CMR group, DCS, IISER Kolkata

Autonomous Self-repair in Piezoelectric Molecular Crystals

First demonstration of autonomous self-healing in crystalline materials - No external stimuli, diffusion-less, Fast (~ ms)

Polarization studies unraveled the Piezoelectric origin of the selfhealing mechanism of the Polar crystal

Bhunia et al., Science, 2021, 373, 6552, 321-327

Self-healing in nature (bone) – provides a clue

Stress acting on the bone creates an electric potential, and attracts osteogenic cells due to the formation of electric dipoles. It subsequently accumulates minerals, mainly calcium, on the compression side of the bones

Basic building blocks of bone is collagen, which is **piezoelectric** in nature because of its **noncentrosymmetric** structure made of polypeptides

Fabian Vasquez-Sancho et. al Adv. Mater. 2018, 30, 1705316

Video source: https://www.youtube.com/watch?v=EBPYSMH5OGo

Piezoelectric response of <u>non-centrosymmetric</u> Polar crystals

Stress-induced changes in the permanent dipoles leading to *macroscopic* Polarization P_i

Task: Probe changes in the *macroscopic* Polarization (**Piezoelectric response**) through **stress-induced** changes in *microscopic* optical anisotropy

Polarized light for probing structural anisotropy in crystals

Manifestation of structural anisotropy in Mueller matrix

0.1

0

-0.1

0.8

0.6

0.4

0.2

-0.5

0.2

0

-0.2

Healed crystal

Structural anisotropy: Symmetries of MM elements Blurred

Amplitude (diattenuation) & phase anisotropy (retardance) - Crosstalk

Depolarization- tight focusing

Confounding effects decoupled – *microscopic* anisotropy in L_m

Lm *matrix*

Microscopic structural anisotropy parameters

Pristine crystal– high d and δ High degree of structural order in the microscopic anisotropy units
d and δ of healed marginally lower than pristine: Self-healing (~ 85%)
Imperfectly-healed : Significantly lower magnitudes of d and δ

Microscopic orientation of the anisotropic units Retarder axis θ

Pristine and neatly-healed: Orientational order in the nanoscopic building blocks Repair with nanoscopic precision & long range crystalline order Imperfectly-healed crystals: Orientational disorder at the crack junction

Science, 2021, 373, 6552, 321-327

Quantitative assessment of healing through structural

~ 60% decrease in the microscopic anisotropy for imperfect healing

Large reduction in *microscopic* anisotropy for imperfect healing

Spatial averaging with randomly oriented / misaligned anisotropic domains

Fragmented crystal: Lower magnitudes of microscopic anisotropy ~ **30 % reduction**

Insight on the healing mechanism

Reduction in anisotropy of fragmented crystal

Decrease in structural order in the *microscopic* building units due to strain (**Plasticity**) or permanent defects- mechanical stress

Change in permanent dipoles or *macroscopic* polarization **P** - **piezoelectric** effect

Surface charges on the fractured faces

Insight from Polarization studies

Generation of surface charges through Piezoelectric effect

Confirmed by Kelvin probe & Piezo Force microscopy Science, 2021, 373, 6552, 321-327

Efficient healing: Release of strain & restoration of native anisotropy

Efficiency quantified through *microscopic* anisotropy parameters

Inefficient healing : Penalty in structural order, Enhanced residual stress. Alignment with crystallographic precision is favorable

Application Example - 2

Nano scale tissue multifractal anisotropy in polarized light scattering: novel biomarker for precancer detection

Nanometer scale tissue structural anisotropy probed via multifractal analysis of wavelength variation of Mueller matrix elements

Multiple Power law coefficients throughout v range

Otherwise hidden Sub-diffractional information!!

J. Biomed. Opt., 21, 095004 (2016), Scientific Report, 4, 6129 (2014), Optics Letters, 38, 211 (2013)

Anisotropic Tissue structure & nano scale Multifractal anisotropy

Manifestations: Different power law exponents for orthogonal Polarizations

Multiple power law exponents

 $|s_{||}(v)|^2 \approx v^{-\gamma_{||}},$ $|s_{\perp}(v)|^2 \approx v^{-\gamma_{\perp}}$

Optics Communications, 413 172–178 (2018)

Self-similar fibrous network : Nano scale Multifractal anisotropy

Encoded in spectral Mueller matrix elements (Polarization resolved intensity)

Extraction of Multifractal anisotropy

Multifractal analysis on Fourier processed spectral Mueller matrix intensity elements

Laser Physics Letters, 15, 035601 (2018), Journal of Optics, 18, 125301 (2016)

Polarimetry in Nano optics & Plasmonics

Polarization controlled tuning of Fano resonance in plasmonic crystals

ACS Nano, 11, 1641, (2017), Phys. Rev. A., 97, 053801 (2018), Phys. Rev. A, 99, 032123 (2019) Optics Express, 24, 6041 (2016)

Spin orbit interaction of light in plasmonic metamaterials

Phys Rev. A, 2022, Communications Physics, 4, 102 (2021), *JOSA B., 38, 2180 (2021), Phys. Rev. A*, 102, 033518 (2020), Scientific Reports, 10, 11464 (2020), *Phys. Rev. A*, 100, 033805 (2019), Phys. Rev. A., 97, 043823 (2018), Optics Letters, 41, 4499-4502 (2016), Scientific Reports, 6, 39582 (2016)

Geometric phase meta-surface manipulation of light at nanometer scale

Quartz

Analyzer

Detector

