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Abstract 
The article examines the geometric approach to the proof of the Fermat Great Theorem (TF). Its 

geometric formulation is given, which consists in the fact that the trajectory on the Cartesian plane 

corresponding to the TF does not pass through any rational point. The equation of motion of a material 

point along the trajectory is obtained. The non-computability of the problem of determining the 

position of a point on the trajectory is shown. 
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1. Introduction 

Fermat Great Theorem attracted the attention of mathematicians all over the world for more 

than 300 years from the moment of its formulation by P. Fermat in 1637 until its proof by 

Andrew Wiles in 1994-1995 [1, 2]. Both before this outstanding event and after it, attempts to 

find the simplest possible proof of this theorem did not stop, as if stimulated by Fermat's 

remark left in the margins of Diophantus' Arithmetic that he "managed to find a truly 

amazing proof", which he cannot cite for the lack of space [3]. 

The searches for proof of the Fermat theorem led to important results in the modern number 

theory. This has a deep meaning that indicates the relationship of seemingly distant fields of 

knowledge. It is this that gives meaning to the search for alternative proofs of the already 

proven theorem, allowing us to reveal new relationships that previously escaped the attention 

of researchers. 

This article is devoted to this aspect of the issue. To study Fermat theorem, we use methods 

and concepts that are far from algebraic, which were used for the investigation of the ways to 

prove the theorem earlier. 

 

2. Geometric formulation of the Fermat theorem 

As shown in [3] Fermat theorem (TF) can be formulated geometrically in the form of the 

following statement:  

 

"A curve on the plane given by the equation 

 

3,1  nyx nn
        (1) 

 

does not contain a single rational point” 

 

Here x,y – Cartesian coordinates of plane points, n – is an integer. In polar co-ordinates x = 

r·cosφ, y = r·sinφ the equation of the curve looks as follows 
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A rational point is a point whose Cartesian coordinates are expressed in rational numbers. 

Let's try to prove this statement. 

Let's imagine that a material point moves along the curve (2). We want to get the equations 

of its motion. To do this, consider the Euclidean metric on the Cartesian plane [4]. 
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s – is an interval on the plane, t – is a coordinated time, с – is a speed of light in the vacuum.  

Substituting (2) into (3), we get the induced metric on the curve (2) 
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s׳- is an interval on the curve. Since all further arguments and calculations will concern the curve (2), we will omit the «׳» sign.  

In accordance with (4) the metric tensor gik on the curve (2) looks as follows (i,k = 0, 1) 
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The equations of motion of a point along the curve (2) have the form 
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Γi
kl – Christoffel symbols [4], x0 = ct, x1 = φ. Using (5) we receive 
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It follows from the first equation (7) that the coordinate time t linearly depends on the proper time s and with the help of a 

choice of units it can be put as t = s. The second equation by a single integration can be reduced to the form 
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Ω – is the first integral of the second equation (7). Equation (8) can easily be solved numerically. Figures 1 and 2 below show 

the results.  

 

  
 

Fig 1: Left: the trajectory (2) r = R(φ) for n = 8; Right - the solution of the equation (8) φ(s) (line) and the trend line (dot-dashed); Ω = 1. 
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Fig 2: Left: <φ(s)> - solution of equation (8) minus the trend; Right: its Fourier spectrum сj, calculated by the discrete fast Fourier transform 
method, 0<j<256; Ω = 1. 

 

3. Discussion 
The most interesting information is contained in the spectrum of the solution <φ (s)> minus the linear trend, shown in Figure 2 
on the right. It contains a component corresponding to the fundamental frequency ω0 of the solution (it has a maximum 
amplitude), the regions ω > ω0 to the right of it, where harmonics ωm = mω0 (m is an integer) are distinguished, multiples of 
the fundamental and combinational harmonics having a modulation nature. This corresponds to the nonlinear character of 
equation (8).  
The region ω < ω0 to the left of the fundamental frequency corresponds to a motion with frequencies less than the 
fundamental, and its explanation requires additional considerations. Note that the trajectories for all even n ≥ 4, have a finite 
symmetry group including a subgroup С4 [5], whose elements are rotations to the angles π/2, π, 3π/2, 2π. This can lead to a 
change in the movement period. It can be assumed that these movements are associated with rotations of the trajectory as a 
whole by an angle multiple of π/2, which are not noticeable to a remote observer. For example, if a particle makes a complete 
revolution in time T = 2π/ω0, and if the trajectory turns in the direction of the particle movement by half a revolution, then the 
remote observer will perceive this as the movement of a particle with a doubled period 2T. The turns of the trajectory against 
the direction of the particle's movement from the point of view of a remote observer look like rotations of a particle with a 
higher frequency. 
There are two circumstances in favor of this assumption. First, the described phenomenon is absent for n = 2, when the 
trajectory is a circle and the symmetry group of the trajectory becomes continuous. Secondly, this phenomenon is absent when 
the equation r = R(φ) does not have a symmetry group at all (for example, for r = kφ, k – is a real number) [1].  
By itself, the presence of a continuous frequency spectrum indicates the complex dynamics of the system, leading to its 
unpredictable behavior over long periods of time. For us, it is important the non-computability of the results of such a 
movement [6].  
Let's imagine that we have at our disposal a supercomputer capable of overcoming the Turing barrier [7], which we use to 
calculate the position of a point on the trajectory of motion. Due to the non-computability of the trajectory on an ordinary 
Turing machine, the result of calculating the coordinates of the trajectory on a supercomputer for any point of the trajectory 
will be expressed in numbers that are not rational, which proves the original statement.  
Since the symmetry groups for trajectories for other values of even n have the same finite subgroup C4, the result will be true 
for them as well. For odd n, the symmetry group will be different [3], but the reasoning will not change qualitatively.  
Finally, we note that the value of n = 8, as well as the form of representation of the spectrum graph in Fig. 2, are chosen only 
for reasons of clarity and are not principal. 
 

4. Conclusion 
The article examines the geometric approach to the proof of Fermat's Great Theorem (FT). A geometric formulation of FT is 
given, which consists in the fact that the trajectory on the Cartesian plane corresponding to the FT does not pass through any 
rational point. This trajectory is invariant under some symmetry operations which conserve its form. The equation of motion of 
a material point along the trajectory is obtained and solved numerically. The Fourier spectrum of this solution demonstrates 
some features which are inherent to the complex dynamics of motion and means unpredictability i.e. non-computability of the 
position of a point in the trajectory. This in turn means that coordinates of all the points of the trajectory don’t have rational 
values, which proves the TF.  
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