

<u>G.M. Katyba</u>,^{1,2,3,*} M. Skorobogatiy³, N.V. Chernomyrdin^{2,4}, A.N. Perov⁴, I.N. Dolganova⁴ D.G. Melikyants,⁴ K.I. Zaytsev,^{2,4} and V.N. Kurlov¹

SAPPHIRE SHAPED CRYSTALS: FROM THZ-WAVE DELIVERY TO SUPER-RESOLUTION IMAGING

¹Institute of Solid State Physics of RAS, Russia

²Prokhorov General Physics Institute of RAS, Russia

3 Department of Engineering Physics, Polytechnique Montreal, Canada

⁴Bauman Moscow State Technical University, Russia

*E-mail: katyba_gm@issp.ac.ru

OUTLINE OF THE TALK

- Optical elements designing for THz radiation delivery
 - Sapphire hollow-core waveguides for low-loss radiation delivery
- Attempts to improve the spatial resolution of THz imaging
 - Bundles of metal-coated sapphire fibers for THz sub-wavelength imaging
 - Tapered all-dielectric optical bundles for sub-wavelength imaging with

using diffraction limited optics

Optical elements designing for THz radiation delivery

THz radiation

THz Waveguiding Technologies

#	Waveguide	Cross-section	Spectral range, THz	Losses α , cm ⁻¹	Material	Sizes	Comments	
1	Parallel plate	E	0.1 - 4.0	$\alpha < 0.1$ near $\nu = 0.4, 1.4$ and 2.8 THz; $\alpha > 0.2$ near 4.0 THz	Copper	Separation plate d=108 μm L=24.4 mm	Guiding mechanism: reflection from metal	 Mean features of polymer materials in THz: relatively low radiation losses; high manufacturability (it is possible to
2	Graded step-index	D = 1.35mm	0.2 - 1.5	increase from 0.025 to 0.15	Low density polyethylene (LDPE); $a_{mat}=0.2 \text{ cm}^{-1}$, for $v=1.0 \text{ THz}$	5 rings of holes $D_{out}=1.35 \text{ mm}$ L=20 cm	Guiding mechanism: total internal reflection (TIR); dispersion < 1 ps/THz/cm; single mode below 0.35 THz	 produce the waveguides with complex cross—sections); relatively low refractive index; high sensitivity to the outer environment (for
3	Porous Step-index	4 mm	0.2 - 0.4	0.035+3.1v ² [THz ²]	Silk foam; n_{mat} =1.057 α_{mat} =0.9 for for v =0.3 THz	$D_{out}=5 \text{ mm}$ L=20 cm	Guiding mechanism: TIR; dispersion ≈ 10 ps/THz/cm; 94% porosity of material	the most polymers);high dispersion in many cases.
4	Hollow tube	D _{core} h	0.3 - 1.0	decrease from 0.05 to 0.5	Polymethyl- methacrylate (PMMA); $\alpha_{mat} = 21.0 \text{ cm}^{-1}$, for $v = 1.0 \text{ THz}$	$D_{\text{core}} = 4 \text{ mm}$ h = 2.95 mm	Guiding mechanism: anti-resonant (ARROW); dispersion < 10 ps/THz/cm; high absorbing cladding	 Mean features of crystalline materials in THz: low radiation losses and high refractive index; High resistivity (thermal, chemical, etc.) High hardness of material prevent to produce
5	Hollow tube with coating	Ag film Gas solar as cons λir care - 10 μm Polymer film	2.5	0.0011 cm ⁻¹	Hollow tube: silica glass, Cladding: polystyrene+Ag	$D_{\text{core}} = 2.2 \text{ mm}$ $L_{\text{film}} = 8.2 \text{ \mum}$ (Ag-film=1 \mum)	Guiding mechanism: reflection/ARROW; CDP is used for PS-Ag deposit film	waveguides with complex shape
6	Two-wire plasmonic	6-0 	0.03 - 0.5	increase from ~ 0.003 to 0.015	Wires: stainless steel, Cladding: Styrofoam	$D_{\text{wire}} = 0.3 \text{ mm}$ L = 24 cm wire separation: 0.5 cm	Guiding mechanism: plasmonic; demonstrated THz guiding through commercial TV-cable	
7	Revolver multichannel	A CONTRACTOR	0.5 - 2.5	$\alpha_{\min} = 0.017$ $v = 2.1 \text{ THz}$	Polypropylene (PP) $\alpha_{mat} = 0.2 \text{ cm}^{-1}$, for $v = 1.0 \text{ THz}$	d=0.06 mm r=0.4 mm $D_{core}=1.3 \text{ mm}$ $D_{outer}=4.45 \text{ mm}$ l=0.79 mm	Guiding mechanism: ARROW; dispersion<1 ps/THz/cm; 3 transparency band near 0.7, 1.4, and 2.1 THz	Moreover, all this types of THz waveguides can not be used for THz measurements in aggressive environments, in high temperature/pressure, in
8	PC omniguide		0.1 - 0.3	$a_{\min} = 0.12$ v = 0.18 THz	Printing resin (PlasClear, Asiga) $\alpha_{mat} \approx 1 \text{ cm}^{-1}$, for $\nu = 0.18 \text{ THz}$	$\begin{array}{c} D_{\rm core} = 4.5 \ \rm mm \\ \rm resin \ layer - \\ 512 \ \mu m \\ \rm air \ layer - \\ 512 \ \mu m \\ N_{\rm bilayer} = 10 \end{array}$	Guiding mechanism: Photonic Bandgap (PBG); have been used as a biosensor with sensitivity ≈ 0.1 GHz/µm	particular! For example, they can damaged from medical sterilization

[G. Katyba et al., Progress in Crystal Growth and Characterization of Materials 67 (2021) 100523]

Shaped Sapphire – Key to THz delivery via hollow-core waveguides

Refractive index (a, c) and extinction coefficient (b, d) of sapphire

- High melting point (higher then 2000 K)
- Broad transmission band spanning the UV, <u>visible, and IR bands</u>
- High tensile strength
- High chemical and thermal shock resistance
- Biocompatibility
- High hardness (9 degree on Mohs scale)
- High specific heat
- Low friction coefficient ($(3.24-5.66)10^6 \text{ K}^{-1}$)

Shaped crystal growth techniques

cross-sections of shaped crystals are very close to the final geometry

minimizing volume of labor efforts and corresponding losses of materials

growth of crystals with shapes which impossible to grow or prepare from bulk crystals

high growth rates

new fields of applications

on the basis of the **Stepanov concept**

THz Waveguide Manufacturing Based on Shaped Sapphire Crystal

THz Waveguiding in Shaped Sapphire: Numerical Analysis and Experimental Results

[G.M. Katyba, et al., Adv.Opt.Mat., (2018); K. I. Zaytsev, et al., IEEE Trans. Ter. Sci. Tech. 4(6), 576, (2016)].

A model-based approximation of the experimental THz PC waveguide

Attempts to improve the spatial resolution of THz imaging

INCREASING OF SPATIAL RESOLUTION OF THZ SENSING AND VISUALIZATION

Problem of low spatial resolution of THz spectroscopy and imaging

Spatial resolution (SP) is limited by electromagnetic wavelength ($\lambda \cong 300 \ \mu m$ or 1 THz) and numerical aperture NA = $n \cdot sin\alpha$

$$max{NA} = n$$

$$\delta = \frac{\lambda_0}{2 \cdot n}$$
 Abbe diffraction limit
For n=1 (air) $\delta = \frac{\lambda_0}{2}$

It is necessary to increase the NA to achieve high SP

THZ IMAGING USING THE FIBER BUNDLES

Example: microwave fiber endoscope

A concept of sapphire fiber bundle for THz imaging with sub-wavelength resolution

THZ IMAGING RELYING ON A BUNDLE OF METAL-COATED SAPPHIRE FIBERS: Optical characterization

[K.I. Zaytsev et al., Advanced Optical Materials (2020), 2020, 2000307]

THZ IMAGING RELYING ON A BUNDLE OF METAL-COATED SAPPHIRE FIBERS

THz imaging of the test object

(a)

 $I_{\rm n} (\mathbf{r}) = \frac{I_{\rm raw} (\mathbf{r})}{I_{\rm ref} (\mathbf{r})} \left(1 + \kappa \frac{N}{I_{\rm ref} (\mathbf{r})} \right)^{-1}$

DISADVANTAGES: energy-inefficient near-field probes (apertures)

Saratov Fall Meeting 2022, Advanced Materials for Optics & Biophotonics V, Saratov, Russia, 2022

A concept of tapered sapphire fiber bundle for THz imaging with sub-wavelength resolution

Manufacturing of the sapphire fiber bundle for THz imaging with sub-wavelength resolution

$$\delta = \frac{d}{\lambda} = \frac{d\nu}{c_0}.$$

RESEARCH GROUP & COLLABORATIONS

ISSP RAS Chernogolovka, Russia

V.N. Kurlov

G.M. Katyba

V.E. Ulitko

Moscow, Russia D. E. Melikyants

Sechenov University, Moscow, Russia

Saratov State

University,

Saratov, Russia

V.V. Tuchin

A.S. Kucheryavenko I.N. Dolganova

A.K. Zotov

A.V. Kaledin

E. V. Yakovlev A. N. Perov

THANK YOU FOR ATTENTION!