Laser Doppler flowmetry based on spectrum decomposition for the diagnosis of skin vascular complications I.O. Kozlov, A.V. Dunaev, K.V. Podmasterev, E.A. Zherebtsov

R&D Center of Biomedical Photonics, Orel State University, Orel, Russia

*e-mail: igor57_orel@mail.ru, Tel.: +7 920 814 04 58, http://bmecenter.ru/en

Aim of the research

Clinical functional diagnosis of blood microcirculation can be performed using non-invasive optical methods. Laser Doppler flowmetry (LDF) is one of these methods used in many branches of medicine, including endocrinology, dentistry, and dermatology. In this technique, blood perfusion is measured in the diagnostic volume in relation to the rate of blood flow and the concentration of red blood cells. In most modern LDF devices, however, useful information regarding Doppler frequency broadening cannot be accessed and used to solve diagnostic issues.

This work proposes a device and method for laser Doppler flowmetry that enhances the feature space based on the signal distribution by Doppler broadening frequencies.

Research protocol					Materials and Methods		
4	Adaptation to experimer conditions – 10-15 min	nt 2 Fi Sur	lling information consent vey about health status -	and 5min	Device:	Custom LDF device; 1064 nm wavelength of laser radiation; Coaxially combined with fibre local heating pad.	
3	10 min	5 min	25 min		Area of interest:	Skin dorsal surface of the foot	
	Stage 1 – Baseline St	tage 2 – Heating	Stage 3 – Heating test		Group of	11 patients with diabetes mellitus type 2	

 C^3 – mean cumulative curve for

stage 3.	by Doppler		Table T – Accuracy characteristics of LDA					
	broadening frequency and oscillation frequency		Specificity	Sensitivity	AU ROC			
	and oscination inequency		0.73	1	0.89			
Conclusion	It is demonstrated that the implemented technique for establishing diagnostics criteria show a high AU ROC and other accuracy characteristics. As the result, a novel system for microcirculation disorders diagnosing in patients with diabetes type 2 has been developed and new feature space has been proposed.							

Acknowledgements

The reported study was funded by RFBR, project number 19-32-90253.

RESEARCH & DEVELOPMENT CENTER BIOMEDICAL PHOTONICS

