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Abstract

The finite element method (FEM) solver for the two-center Coulomb problem with
discrete and continuous spectrum in prolate spheroidal coordinates under separation
independent variables is presented.

The eigenvalues of energy and separation constant of discrete spectrum and the
eigenfunctions or separation constant and phase shift of continues spectrum of energy
and the eigenfunctions of the boundary problems for the quasiradial and
quasiangular equations are calculated by the finite element method KANTBP 5M
program implemented in Maple on a grid of the parameter, the distance between the
Coulomb centers.

The required difference of pair of eigenvalues of energy of discrete spectrum of
quasiradial and quasiangular equations are calculated with a given accuracy by the
iteration second method with respect to the required separation constant.
Benchmark calculations agree with etalon calculations by programs that implement
alternative methods in FORTRAN within a required accuracy.



1D Problem statement

Self-adjoi tem of second-order ODE for unknowns ®(z) by z in the region

1 d d
——=——f(2)== + V(z2) - E ) (z) = 0.
(-5 @ + V@) - E) 0@
fg(z) > 0 fa(z) > 0, V(2) are real or complex-valued coefficients from the Sobolev
space H3=' ().

All coefficients are continuous (or piecewise continuous) functions that have
derivatives up to the order of K™ — 1 > 1 in the domain z € Q.

The boundary conditions:

(I): ®(z") =0, t=min and/or max,
(I1) : lim fA(z)id)(z) =0, t= min and/or max,
z—zt az
(I11) : lim icb(z) = R(Z")®(Z"), t= min and/or max.

2zt dZ




Problem 1. For bound or metastable states

Case of the real potentials and real eigenvalues E: E1 < E; < ... < Ep,

Zzmax

(B[ D) = / . f2(2) (™ (2))* ™) (2)dz = G-

Case of the complex potentials and complex eigenvalues E = RE + 1SE:

RE, < RE; < ... < REp,,

The eigenfunctions ®,(z) obey the normalization and orthogonality conditions

max

(Om|®py) = /  f5(2)0™(2)0™)(2)dz = S

J.G. Muga, J.P. Palao, B. Navarro, I.L. Egusquiza Complex absorbing potentials
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A A. Gusev et al,Symbolic-numeric solution of boundary-value problems for the
Schrodinger equation using the finite element method: scattering problem and
resonance states, Lecture Notes in Computer Science 9301 (2015) 182-197.




Problem 2. The scattering problem

“incident wave + outgoing waves” asymptotic form

D (z > +x)

X®(z

@ b, (z — +0)
“— . Xrﬁ;: (2) + X mm (z)F:’_>, Z— —00
XO()R, | XD (2)T, T X227 + X(2)TS,, z— 4

®_(z— o)

XO(z2) ®.(z = +o0)
l———

> _ Xmln ( )T +Xm|n(z)T<c—7 Z—= =
XO@)T, | XO)R, X5 (2) + X5 (2)R-, z— 4+

®_,(2), . (2) are the solutions

Xr(nln (2), X;: (2) are open channel asymptotic solutions at z — —oo,
X (2), X550 (2) are open channel asymptotic solutions at z — +o00,

R_,, R_ are the reflection amplitudes,

T_,, T— are the transmission amplitudes,

Xéﬁg(z), X8 (2) are closed channel solutions,

TS, TS, are auxiliary coefficients.




Problem 2. The scattering problem

Wronskian conditions

Wr(XF)(2), XH)(2)) = 2, Wr(X P (2), XH)(2)) =0

Wi(a(2), b(z)) = a(z) 02 - B2 )

For real-valued potentials

T T, +R.R, =1,
T:Te +R.R. =1,
T, =T..

For real-valued potentials the scattering matrix is symmetric and unitary, for

complex potentials it is only symmetric

_( B- T~ tg_ ggf —
s_<L Rﬁ), s's —ssi = 1.




Problem 3. The metastable state pr. with complex e.v. E=RE+1SE:

Asymptotic form

(I)M(z—)ioo)
&, (z— £0) = pc ( )0 +Xr$1°|2|(z)of_7 Z— —00
- xr‘n;;’(z)oﬁ + XE(2)0%, z— +oo

Robin (Siegert) BC

(I11) - lim gd)(z) = R(Z")®(Z"), t= min and/or max
7zt dZ

Az = (im, & (X7@.X0@) ) (X7@ x<c>(z))_1

Orthonormalization conditions

(Pm|Ppy) = / f5(2)™ (2)0™)(2)dz = S -

J.G. Muga, J.P. Palao, B. Navarro, I.L. Egusquiza Complex absorbing potentials
Physics Reports 395 (2004) 357-426




Finite Element Method

BVP — problem of determination of stationary points of the variational functional

Zmax

| (L2422 h@e@va-Ere@ ) oz

Zmin

+¢(zmin)H(zmin )¢(zmin) - d>(zmax)H(zmax)q)(zmax)

Exp. of sol. over the basis of local functions N (2)

®(z) = LZ opN(2). (*)

After subst. (*) into a variational functional and
minimizing it, we obtain the generalized AEP

APe" — c"BPe" = 0.

AP is the stiffness matrix;
B” is the positive definite mass matrix;




The statement of Coulomb Two Center Problem

The stationary Schriodinger equation for the two Coulomb center problem

A= -2 EJw(rR)=0,  r={xy,z} € R’

R is the distance between the Coulomb centers,

Z; and Z, are charges

ri and r» are the distances from the electron to the first and the second center,

E are eigenvalues of electron energy: E = E(R) < 0 of discrete spectrum and E > 0
of continues one.

prolate spheroidal coordinates r={&,n, v}

x= 0 @0 Peose, y= @ N[ —B)sing, 2= en,

1<E<o0, —1<n<1, 0<p<2n,
(€+m). n=1D(E—n). dov=(R/2E ~)dedndy

_ 4 9 9 E-n) &
Af—m[ =05+ 570 =Dy * @A o

N\IJ




The separation of the variables

Y(r; R) = Win(&, n; R) exp(ump)/V2r, m=0,1,---,
\Um(fy m R) = wngnnm(g,’f]; R) = annnm(g; R)d)ngnnm(n; R)

The BVP for system of ODEs

_ MR)—at R)—

[ 52 1 d5(£ 1) ( )+ 52_1 +(£2_1)2 an"nm(gv H)_O7
1 d o ad o MR)+by P
o )dn R e (T

e(R)=—p?(R) are the eigenvalues, A(R) the separation constant,

ng and ny, are number of zeros of Fn.n,m(&; R) and ®n.p, m(n; A) connected to

principal N = n¢ + n,, + m+ 1 and azimuthal / = n,, + M quantum numbers,
a=(Z1+24)R, b=(Z—2Z1)R.

:| q)ngn,qm('r]; R):O.

FEM algebraic problem

APe" — "BRE" + A"CPe" = 0,
A2p" — "BRg" — A"CRp" =0




Discrete spectrum. Reformulation of the problem

The BVP for system of ODEs

1 die yd AR)-a¢ nP .
[ €2_1 dé (‘E 1)d€ Ené(R)'i‘ (2_271 +(£271)2 Fném(gy ,‘:?)_O7 (4)
_ L By e O _AR)t+by,  m .
[ 1—n? dn(1 77 )d77 ey (F) 12 +(1—772)2 ®n,m(n; R)=0. ()
Here eng(Fw’):—pz(H) and en, (R)=—p?(R) are the eigenvalues
100 100
= Vi(n.4)

k&:ﬂ @ Potentials of BVPs (4)
Mol 2 3 £ 4 and (5) at m = 0
—T—=05—6 ;

versus A marked by
2 2\0 0: A=0; 1: A=20;

-100 0

2: A=40; 3: A=60;
\ 4: A=80; 5: A=100.
2200 200 2




Discrete spectrum. The secant method

The equation

f(x) =0, f(X)=€nc (X R)—en, (X R), x=\.

The secant method for solving equation f(x)=0

xE=[ (N0 — (D) /[ £ (x DY), s=1,2, ...

with initial values x(") and x© for given R

v

Input: Zy, Z, R, m, ng, n,, 6 = 1077 is the tolerance, Q¢ and Q,, are the grids
Output: A(R), en. (A R)=¢n, (X; R)=—p?(R), Fren,m(&; R), and ®n.n, m(n; R)

Step 1 Initial approximation of interval boundaries A € [Ag, A1]

Step 2 FEM calc. €Y =en, (Ao; R), ehr=en, (M R), ei)=en, (Ao; R), ) =en, (M1; R);
Step 3 €o : :657?—6521), €1 : :65-,15)—6571,), A=(e1Xo—€o1)/(€1—€0), de=€1—¢o;

Step 4 secant method: loop is executed until |de| > §

Step 4.1 FEM calc. en, =¢n, (XN R), en,=en, (N R), € =€n, —€n
Step 4.2 Select (eo, Ao)=(€, A) or (e1, A1)=(e, A) by sign of €
Step 4.3 New approximation A=(e1Ao—eoA1)/(€1—€p), de=e1—eg
Step 4 End of loop of secant method

End

.

n




Discrete spectrum. Results

Separation constants A(R) and eigenvalues p(R)? calculated for R=10, Z;=1
and Z>=2 and m=0 using the TERM and KANTBP 5M program and their differences.

TERM KANTBP 5M
ne R) PR | MR R(A A | AR PR
0 0 -9.97499 105.00071 9.97499 -105.00072 -105.0007 -6.0E-07 -5.7E-06
0 8 -73.58715 2.83101 73.58715 -2.83101 -2.831 -1.0E-07 -2.6E-09
8 0 5.30544 2.19296 -5.30544 -2.19296 -2.19295 -1.4E-06 -4.7E-08
8 1 -3.09148 1.94442 3.09145 -1.94442 -1.94437 -3.0E-05 -8.5E-07

Gusev, A. A., Solov’ev, E. A., and Vinitsky, S. I.. ARSENY: A program for computing inelastic

transitions via hidden crossings in one-electron atomic ion—ion collisions with classical description

of nuclear motion, Comput. Phys. Commun. 286, 108662 (2023)

1.0x10°

50x10"

HIP(p=3 K 2=2)

error §1,6E

0z (1,1.08, 117,126,136, 147,159, 171,185,
.0x10° ] 200,216,233,252,272,284,3.17, 343,370,400,

Differences of the functions of the
separation constant SA(R) = AS(R) —
ATD(R) and energy 6E(R) = ES¥) — E(D
depending on the parameter R, for Z; = 1
and Z, = 2 and m = 0, calculated using
the secant method algorithm and the
KANTBP 5M program, and the TERM
(T) procedure




Discrete spectrum. The eigenfunctions Wp,n, m(§, 7, R) in XZ plane for
N=n:+n,+m+1<4at R=4 m=0 labelled by [n¢, n,, \(R), e(R)]

[0.3,13.447.-2.5846]

[1.2.7.6350,-2.7354] [2.1,3.9088.-2.0598] [3.0.-93786.-1.6730]

—10-50 5 10 —10-50 5 10 —10-50 5 10 "S5 0 5 10
x [0.2.9.0344,-5.6550] [1,1.4.8700,-3.5946] [2.0.-48767.-2.7482]

—10-54 5 10 —10-5 0 5 10 —10-5 0 5 10

- [0.1.7.4489.-8.2485] [1,0,.52207,-5 4480]

—10-50 5 10 —10-50 5 10
X X
[0,0.3.9371,-18.005]

A
e\ 4

-1 0 10
X




Discrete spectrum. Results

10
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ﬁ The dependence among p?, A and R.
---20
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Continuous spectrum. Reformulation of the problem
The BVP for system of ODEs

2 A(R)—ag m By
[ () —e(A MO +(§2_1)Z]anm(§,m—o, (6)
d 2
| 5 (0=1P) MR~ =)l R) b0+ 7T | 0 )0 @

The logarithmic derivative R(§) in the Robin BC is determined using asymptotes of
the radial Coulomb spheroidal function (RCSF) Fyn(¢; R)) or regular

Fi(y, p)=Nc(f)Fi(v, p) and irregular G(vy, p)=Nc(f)Fi(7, p) asymptotes of Coulomb
functions at p=c¢ and y= — a/2c= — (Z1+2)/k

Fim(& R) = R; (v,0)) — R/ (7,0)S), S/ = exp(zzé“’(k)) (8)

RiF(1,0)) = Ri¥ (v )A™ (p: P), A~ (i P) = <1 +Z & >

Ry (7, p00) = o) exp(8(). 0(€) =0t~ In(206)~15-+5(/(Z k),

where aF is coefficients of the function Aji(p7 p) determining from recurrence
relations obtained by substitution of the R,i (7, p)) to Eq. (6) at £€>> 1.




Continuous spectrum. Results

-3.92594601095385 0.16425863751757 4645356236215 10.326944735386 1837190682860

—10—=5 0 5 10
X X X X X

The Real part of continuum spectrum eigenfunctions Wp, m(&, 7, R, k) (upper panel)
and probability density (R/2)%(62 — 7?)|Wn,m(&,m, R, k)| (lower panel) in Xz plane at
E =2k? =2, R=4, m = 0 with the separation constant A\(R) from n, = 0 (left) till
n, = 4 (right)




Resume

o It was shown that presented algorithm and program SECANT for calculating a
pair of real valued eigenvalues and eigenfunctions at N < 10 of the two Coulomb
centers system by the secant method, which call as a subroutine the KANTBP
5M program for FEM solving BVPs for Egs. (2) and (3)provides a good
agreement with the etalon results obtained by ARSENY program with the
required accuracy of the order of 1078 — 1077, that is accepted in the current
applications.

o Evidently, the algorithm and program SECANT can also used to call as a
subroutine the some other programs for solving BVPs for Egs. (2) and (3),for
example as well as some other CAS.

e For solving a continuous spectrum problem at a fixed value E > 0, it is sufficient
to solve eigenvalue problem for Eq. and substitute a calculated eigenvalue An.m,
and to solve the corresponding BVP for with the mixed Neumann (or Dirichlet)
and Robin boundary conditions using asymptotes like and only the KANTBP
5M program.

o The algorithm SECANT can be also applied to calculate the series of branching
points R¢ sought for in the complex plane of distance R and the hidden crossings
of complex energy curves Ep, n, m(R) following the corresponding algorithms of
ARSENY program.

THANK YOU FOR YOUR ATTENTION



