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Abstract

The �nite element method (FEM) solver for the two-center Coulomb problem with
discrete and continuous spectrum in prolate spheroidal coordinates under separation
independent variables is presented.
The eigenvalues of energy and separation constant of discrete spectrum and the
eigenfunctions or separation constant and phase shift of continues spectrum of energy
and the eigenfunctions of the boundary problems for the quasiradial and
quasiangular equations are calculated by the �nite element method KANTBP 5M
program implemented in Maple on a grid of the parameter, the distance between the
Coulomb centers.
The required di�erence of pair of eigenvalues of energy of discrete spectrum of
quasiradial and quasiangular equations are calculated with a given accuracy by the
iteration second method with respect to the required separation constant.
Benchmark calculations agree with etalon calculations by programs that implement
alternative methods in FORTRAN within a required accuracy.



1D Problem statement

Self-adjoint system of second-order ODE for unknowns Φ(z) by z in the region
z ∈ Ωz = (zmin, zmax)

(
− 1

fB(z)
d
dz

fA(z)
d
dz

+ V (z)− E
)
Φ(z) = 0.

fB(z) > 0 fA(z) > 0, V (z) are real or complex-valued coe�cients from the Sobolev
space Hs≥1

2 (Ω).
All coe�cients are continuous (or piecewise continuous) functions that have
derivatives up to the order of κmax − 1 ≥ 1 in the domain z ∈ Ω̄z .

The boundary conditions:

(I) : Φ(z t) = 0, t = min and/ormax,

(II) : lim
z→z t

fA(z)
d
dz

Φ(z) = 0, t = min and/ormax,

(III) : lim
z→z t

d
dz

Φ(z) = R(z t)Φ(z t), t = min and/ormax .



Problem 1. For bound or metastable states

Case of the real potentials and real eigenvalues E : E1 ≤ E2 ≤ ... ≤ ENo

⟨Φm|Φm′⟩ =
∫ zmax

zmin

fB(z)(Φ(m)(z))∗Φ(m′)(z)dz = δmm′ .

Case of the complex potentials and complex eigenvalues E = ℜE + ıℑE :
ℜE1 ≤ ℜE2 ≤ ... ≤ ℜENo ,

The eigenfunctions Φm(z) obey the normalization and orthogonality conditions

(Φm|Φm′) =

∫ zmax

zmin

fB(z)Φ(m)(z)Φ(m′)(z)dz = δmm′ .

J.G. Muga, J.P. Palao, B. Navarro, I.L. Egusquiza Complex absorbing potentials
Physics Reports 395 (2004) 357�426
A.A. Gusev et al,Symbolic-numeric solution of boundary-value problems for the
Schrodinger equation using the �nite element method: scattering problem and
resonance states, Lecture Notes in Computer Science 9301 (2015) 182�197.



Problem 2. The scattering problem

�incident wave + outgoing waves� asymptotic form

Φ→(z → ±∞)

=

{
X (→)

min (z) + X (←)
min (z)R→, z → −∞

X (→)
max (z)T→ + X (c)

max(z)T c
→, z → +∞

Φ←(z → ±∞)

=

{
X (←)

min (z)T← + X (c)
min(z)T

c
←, z → −∞

X (←)
max (z) + X (→)

max (z)R←, z → +∞

Φ→(z), Φ←(z) are the solutions
X (→)

min (z), X (←)
min (z) are open channel asymptotic solutions at z → −∞,

X (→)
max (z), X (←)

max (z) are open channel asymptotic solutions at z → +∞,
R→, R← are the re�ection amplitudes,
T→, T← are the transmission amplitudes,
X (c)

min(z), X (c)
max(z) are closed channel solutions,

T c
→, T c

←, are auxiliary coe�cients.



Problem 2. The scattering problem

Wronskian conditions

Wr(X (∓)(z),X (±)(z)) = ±2ı, Wr(X (±)(z),X (±)(z)) = 0

Wr(a(z), b(z)) = a(z)
db(z)

dz
− da(z)

dz
b(z).

For real-valued potentials

T ∗→T→ + R∗→R→ = 1,

T ∗←T← + R∗←R← = 1,

T→ = T←.

For real-valued potentials the scattering matrix is symmetric and unitary, for
complex potentials it is only symmetric

S =

(
R→ T←
T→ R←

)
, S†S = SS† = 1.



Problem 3. The metastable state pr. with complex e.v. E=ℜE+ıℑE :

Asymptotic form

Φ→(z → ±∞) =

{
X (←)

min (z)O← + X (c)
min(z)O

c
←, z → −∞

X (→)
max (z)O→ + X (c)

max(z)Oc
→, z → +∞

Robin (Siegert) BC

(III) : lim
z→z t

d
dz

Φ(z) = R(z t)Φ(z t), t = min and/ormax

R(z t) =

(
lim

z→z t

d
dz

(
X (⇆)

t (z),X (c)
t (z)

))(
X (⇆)

t (z),X (c)
t (z)

)−1

Orthonormalization conditions

(Φm|Φm′) =

∫
fB(z)Φ(m)(z)Φ(m′)(z)dz = δmm′ .

J.G. Muga, J.P. Palao, B. Navarro, I.L. Egusquiza Complex absorbing potentials
Physics Reports 395 (2004) 357�426



Finite Element Method

BVP → problem of determination of stationary points of the variational functional

zmax∫
zmin

(
dΦ(z)

dzi
fA(z)

dΦ(z)
dz

+fB(z)Φ(z)(V (z)−E)Φ(z)
)

dz

+Φ(zmin)R(zmin)Φ(zmin)− Φ(zmax)R(zmax)Φ(zmax)

Exp. of sol. over the basis of local functions Ng
µ(z)

Φ(z) =
L−1∑
µ=0

Φh
µNg

µ(z). (∗)

After subst. (*) into a variational functional and
minimizing it, we obtain the generalized AEP

Apξh − εhBpξh = 0.

Ap is the sti�ness matrix;
Bp is the positive de�nite mass matrix;



The statement of Coulomb Two Center Problem

The stationary Schr�odinger equation for the two Coulomb center problem

[
−1

2
△r −

Z1

r1
− Z2

r2
− E

]
Ψ(r;R) = 0, r={x , y , z} ∈ R3

R is the distance between the Coulomb centers,
Z1 and Z2 are charges
r1 and r2 are the distances from the electron to the �rst and the second center,
E are eigenvalues of electron energy: E = E(R) < 0 of discrete spectrum and E ≥ 0
of continues one.

prolate spheroidal coordinates r={ξ, η, φ}

x =
R
2

√
(ξ2 − 1)(1 − η2) cosφ, y =

R
2

√
(ξ2 − 1)(1 − η2) sinφ, z =

R
2
ξη,

1 ≤ ξ < ∞, −1 ≤ η ≤ 1, 0 ≤ φ < 2π,

r1 =
R
2
(ξ + η), r2 =

R
2
(ξ − η), dv = (R/2)3(ξ2 − η2)dξdηdφ

△r =
4

R2(ξ2 − η2)

[ ∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1 − η2)

∂

∂η
+

(ξ2 − η2)

(ξ2 − 1)(1 − η2)

∂2

∂φ2 .
]



The separation of the variables

Ψ(r;R) = Ψm(ξ, η;R) exp(±ımφ)/
√

2π, m = 0, 1, · · · , (1)

Ψm(ξ, η;R) = Ψnξnηm(ξ, η;R) = Fnξnηm(ξ;R)Φnξnηm(η;R)

The BVP for system of ODEs

[
− 1
ξ2−1

d
dξ

(ξ2−1)
d
dξ

−ϵ(R)+
λ(R)−aξ
ξ2−1

+
m2

(ξ2−1)2

]
Fnξnηm(ξ;R)=0, (2)[

− 1
1−η2

d
dη

(1−η2)
d
dη

−ϵ(R)−λ(R)+bη
1−η2 +

m2

(1−η2)2

]
Φnξnηm(η;R)=0. (3)

ϵ(R)=−p2(R) are the eigenvalues, λ(R) the separation constant,
nξ and nη are number of zeros of Fnξnηm(ξ;R) and Φnξnηm(η;R) connected to
principal N = nξ + nη + m + 1 and azimuthal l = nη + m quantum numbers,
a=(Z1+Z2)R, b=(Z2−Z1)R.

FEM algebraic problem

Ap
1ξ

h − ϵhBp
1ξ

h + λhCp
1ξ

h = 0,

Ap
2ϕ

h − ϵhBp
2ϕ

h − λhCp
2ϕ

h = 0.



Discrete spectrum. Reformulation of the problem

The BVP for system of ODEs

[
− 1
ξ2−1

d
dξ

(ξ2−1)
d
dξ

−ϵnξ (R)+
λ(R)−aξ
ξ2−1

+
m2

(ξ2−1)2

]
Fnξm(ξ;R)=0, (4)[

− 1
1−η2

d
dη

(1−η2)
d
dη

−ϵnη (R)−λ(R)+bη
1−η2 +

m2

(1−η2)2

]
Φnηm(η;R)=0. (5)

Here ϵnξ (R)=−p2(R) and ϵnη (R)=−p2(R) are the eigenvalues

Potentials of BVPs (4)
and (5) at m = 0
versus λ marked by
0: λ=0; 1: λ=20;
2: λ=40; 3: λ=60;
4: λ=80; 5: λ=100.



Discrete spectrum. The secant method

The equation

f (x) = 0, f (x)=ϵnξ (λ;R)−ϵnη (λ;R), x=λ.

The secant method for solving equation f (x)=0

x (s+1)=[f (x (s))x (s−1)−f (x (s−1))x (s−1)]/[f (x (s))−f (x (s−1))], s=1, 2, ...

with initial values x (1) and x (0) for given R

The Algorithm

Input: Z1, Z2, R, m, nξ, nη, δ = 10−7 is the tolerance, Ωξ and Ωη are the grids
Output: λ(R), ϵnξ (λ;R)=ϵnη (λ;R)=−p2(R), Fnξnηm(ξ;R), and Φnξnηm(η;R)
Step 1 Initial approximation of interval boundaries λ ∈ [λ0, λ1]

Step 2 FEM calc. ϵ
(0)
nξ ≡ϵnξ (λ0;R), ϵ

(1)
nξ ≡ϵnξ (λ1;R), ϵ

(0)
nη≡ϵnη (λ0;R), ϵ

(1)
nη≡ϵnη (λ1;R);

Step 3 ϵ0 : =ϵ
(0)
nξ −ϵ

(0)
nη , ϵ1 : =ϵ

(1)
nξ −ϵ

(1)
nη , λ=(ϵ1λ0−ϵ0λ1)/(ϵ1−ϵ0), δϵ=ϵ1−ϵ0;

Step 4 secant method: loop is executed until |δϵ| > δ
Step 4.1 FEM calc. ϵnξ≡ϵnξ (λ;R), ϵnη≡ϵnη (λ;R), ϵ : =ϵnξ−ϵnη
Step 4.2 Select (ϵ0, λ0)=(ϵ, λ) or (ϵ1, λ1)=(ϵ, λ) by sign of ϵ
Step 4.3 New approximation λ=(ϵ1λ0−ϵ0λ1)/(ϵ1−ϵ0), δϵ=ϵ1−ϵ0

Step 4 End of loop of secant method
End



Discrete spectrum. Results

Separation constants λ(R) and eigenvalues p(R)2 calculated for R=10, Z1=1
and Z2=2 and m=0 using the TERM and KANTBP 5M program and their di�erences.

TERM KANTBP 5M

nξ nη λ(R) p2(R) −λ(R) −p2
nξ

(R) −p2
nη (R) δλ(R) δp2(R)

0 0 -9.97499 105.00071 9.97499 -105.00072 -105.0007 -6.0E-07 -5.7E-06
0 8 -73.58715 2.83101 73.58715 -2.83101 -2.831 -1.0E-07 -2.6E-09
8 0 5.30544 2.19296 -5.30544 -2.19296 -2.19295 -1.4E-06 -4.7E-08
8 1 -3.09148 1.94442 3.09145 -1.94442 -1.94437 -3.0E-05 -8.5E-07

Gusev, A. A., Solov'ev, E. A., and Vinitsky, S. I.: ARSENY: A program for computing inelastic

transitions via hidden crossings in one-electron atomic ion�ion collisions with classical description

of nuclear motion, Comput. Phys. Commun. 286, 108662 (2023)

Di�erences of the functions of the
separation constant δλ(R) = λ(SK )(R) −
λ(T )(R) and energy δE(R) = E (SK ) −E (T )

depending on the parameter R, for Z1 = 1
and Z2 = 2 and m = 0, calculated using
the secant method algorithm and the
KANTBP 5M program, and the TERM
(T) procedure



Discrete spectrum. The eigenfunctions Ψnξnηm(ξ, η,R) in xz plane for

N = nξ + nη +m + 1 ≤ 4 at R = 4, m = 0 labelled by [nξ,nη, λ(R), ϵ(R)]



Discrete spectrum. Results

The dependence among p2, λ and R.



Continuous spectrum. Reformulation of the problem

The BVP for system of ODEs

[
− 1
ξ2−1

d
dξ

(ξ2−1)
d
dξ

−ϵ(R)+
λ(R)−aξ
ξ2−1

+
m2

(ξ2−1)2

]
Fnηm(ξ;R)=0, (6)[

− d
dη

(1−η2)
d
dη

−λ(R)−(1−η2)ϵ(R)+bη+
m2

(1−η2)

]
Φnηm(η;R)=0. (7)

The logarithmic derivative R(ξ) in the Robin BC is determined using asymptotes of
the radial Coulomb spheroidal function (RCSF) Fkm(ξ;R)) or regular
Fl(γ, ρ)=Nc(f )Fl(γ, ρ) and irregular Gl(γ, ρ)=Nc(f )Fl(γ, ρ) asymptotes of Coulomb
functions at ρ=cξ and γ=− a/2c=− (Z1+Z2)/k

F as
flm(ξ;R) = R̂−l (γ, ρ))− R̂+

l (γ, ρ)Sl , Sl = exp(ı2δ(s)lm (k)), (8)

R̂±l (γ, ρ)) = R±l (γ, ρ))A±(ρ; p), A±(ρ; p) =

(
1 +

p∑
n=1

a±n
ρn

)
,

R±l (γ, ρ→∞)=
Nc(f )
(cξ)

exp(±ıθ(ξ)), θ(ξ)=cξ−γ ln(2cξ)−l
π

2
+δ

(C)
l (Z/k),

where a±n is coe�cients of the function A±(p, ρ) determining from recurrence
relations obtained by substitution of the R̂±l (γ, ρ)) to Eq. (6) at ξ ≫ 1.



Continuous spectrum. Results

The Real part of continuum spectrum eigenfunctions Ψnηm(ξ, η,R, k) (upper panel)
and probability density (R/2)3(ξ2 − η2)|Ψnηm(ξ, η,R, k)|2 (lower panel) in xz plane at

E = 2k2 = 2, R = 4, m = 0 with the separation constant λ(R) from nη = 0 (left) till
nη = 4 (right)



Resume

It was shown that presented algorithm and program SECANT for calculating a
pair of real valued eigenvalues and eigenfunctions at N ≤ 10 of the two Coulomb
centers system by the secant method, which call as a subroutine the KANTBP
5M program for FEM solving BVPs for Eqs. (2) and (3)provides a good
agreement with the etalon results obtained by ARSENY program with the
required accuracy of the order of 10−6 − 10−7, that is accepted in the current
applications.

Evidently, the algorithm and program SECANT can also used to call as a
subroutine the some other programs for solving BVPs for Eqs. (2) and (3),for
example as well as some other CAS.

For solving a continuous spectrum problem at a �xed value E > 0, it is su�cient
to solve eigenvalue problem for Eq. and substitute a calculated eigenvalue λnξm,
and to solve the corresponding BVP for with the mixed Neumann (or Dirichlet)
and Robin boundary conditions using asymptotes like and only the KANTBP
5M program.

The algorithm SECANT can be also applied to calculate the series of branching
points Rc sought for in the complex plane of distance R and the hidden crossings
of complex energy curves Enξ,nη,m(R) following the corresponding algorithms of
ARSENY program.

THANK YOU FOR YOUR ATTENTION


